

Benötigte Materialien:

Stromkreis siehe Skizze (Amperemeter, 2 Lämpchen, Spule+U-Kern: $1600Wg/45\Omega/0.25A/50mH$; Widerstand 50Ω ; etc.)

Aufgabenstellung/Durchführung:

Lege eine Spannung von 8V~ an. Beobachte die Lämpchen, vor/nachdem du die Spule auf den U-Kern aufgesetzt hast bzw. das Joch geschlossen hast.

Erläuterung:

Der <u>Gleichstromwiderstand</u> der Spule ist gleich dem ohmschen Widerstands (R) des aufgewickelten Drahtes.

Beim Wechselstromwiderstand (Z=Scheinwiderstand=Impedanz) kommt noch der induktive Blindwiderstand (X_L = "magnetischer Widerstand der Spule") dazu. Dieser entsteht durch den ständigen Feldauf- und abbau. Die Impedanz muss durch Messung bestimmt werden.

Formel:

 $Z=\sqrt{(R^2+X_L^2)}$ mit Z=U/I

Messung:

Modus	Strom	X _{L (Mit TI)}
A ohne Spule	0,14A	35.2 Ω
A mit Spule	0,054A (rechtes Lämpchen erlischt, linkes beginnt zu leuchten)	141.2 Ω
A mit Joch	0,007A	1142.0 Ω

Ergebnis:

Der Widerstand der Spule erhöht sich durch einen Eisenkern

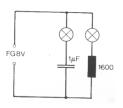
Vermutung über den Zusammenhang zwischen X_L und Frequenz:

Je höher die Frequenz, desto höher der Widerstand (Mehr Umpolungen der Spule pro Zeiteinheit)

Benötigte Materialien:

Stromkreis siehe Skizze (Frequenzgenerator 8V, 2 Lämpchen, Kondensator 1µF, Spule 1600 Wg., etc.)

Aufgabenstellung/Durchführung:


Regle die Frequenz in groben Sprüngen zwischen 100Hz und 10kHz, beobachte.

Ergebnis:

Zu Begin leuchtet das Lämpchen hinter der Spule, ab 450Hz das Lämpchen hinter dem Kondensator.

Erklärung:

Aufgrund der Impedanz kann die Spule nur niederfrequente Ströme passieren lassen, der Kondensator nur hochfrequente. Durch eine solche Frequenzweiche werden zB. verschiedenfrequente Bestandteile der Musik getrennt (Dreiweglautsprecher u.ä.)

